Integration/Evaluation of a HCI Prototyping Environment

Final Report

;g T
Delivery Order No. 25 ’
Basic NASA Contract No. NAS8-39131

A 3Y7) 0 cr7

Department of Computer Science and Engineering
Aubum University, AL 36849-5347

Contact: Loretta A. Moore, Ph.D.
Principal Investigator
(205) 844-6330
moore@eng.auburn.edu

October 17, 1994

Integration/Evaluation of a HCI Prototyping Environment
Final Report

Delivery Order No. 25
Basic NASA Contract No. NAS8-39131

Loretta A. Moore, Ph.D.
Principal Investigator

October 17, 1994

ABSTRACT

Components of a Human Computer Interface (HCI) prototyping environment have been inte-
grated and evaluated. This environment will be valuable in developing and refining HCI standards
and evaluating program/project interface development, especially the International Space Station Al-
pha’s on-board displays for payload operations. This environment, which allows for rapid prototyping
and evaluation of graphical interfaces, includes four components: (1) a HCI format development tool,
(2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the
HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of
a HCI based on a user’s performance. The objective of the research was to determine whether or not
the functional components could be integrated and could provide the needed functionality for a rapid
prototyping environment. In order to evaluate the rapid prototyping environment two prototypes were
developed. The system chosen for initial evaluation was an automobile. Following the automobile
prototype development, the Hopkins Ultraviolet Telescope (HUT), a Spacelab/Space Station payload,
prototype was developed. This report will discuss the architecture of the environment, the prototypes
developed within it, and results of an evaluation of the environment based on usability, functionality,
and performance.

ACKNOWLEDGMENTS

We appreciate the assistance provided by NASA personnel, especially Mr. Joseph P. Hale, whose
guidance has been of great value. The following is an alphabetical listing of the team members who

have participated on the project.
Principal Investigator:
Loretta A. Moore, Ph.D.
Graduate Research Assistants:
Terri Bester
Shannon Price
Thomas Rix

Undergraduate Research Assistants:

Roderick Chaney
Trina Knight

The following trademarks are referenced in the text of this report:

Sammi is a trademark of Scientific Software-Intercomp.
PERCNET is a registered trademark of Perceptronics, Inc.

1i

TABLE OF CONTENTS

L0 IDOQUCHON et 1
2.0 Architecture of the Prototyping ENVIironmentoo...... e 2
2.1 Graphical User Interface Development TOOcoccuevvvenieeoeeeeooeseeeoooooooo 3
2.2 Simulator DEVElOPMENt TOO!ooccerserrsoersrossos e 3
2.3 Graphical User Interface Evaluation TOO!o.oooooccmvoo 3
2.4 Dynamic, Interactive INtErfaceccoomveeerommmmoooroseeococeesesoooooooo 3
3.0 Automobile Prototype BRSSO SRR 3
3.1 Graphical User Interfaceocoovooooovoooo et et e 4
3.2 Low Fidelity SIMUlatorc.cocccceeuvveersoomeroeosecsocoooooooo 5
33 Interface EValuation RUIESccccocccccccmverernmmnscecroocceeesooooooooo 6
4.0 Hopkins Ultraviolet Telescope (HUT) PrOtOtypeveoeeeeeeemreoooeooeoooooooooo 7
4.1 Interface and Simulator REQUITEMENtSoooeeeeoeeeeereoeoooeoooooooooooooooooo 7
4.2 GraphiCal USEr INEITACEvevrosccccceeeeeerreenesesessoeeeeeeseee oo 8
4.3 Low Fidelity SImulatorc.ccooucevooecrrvommmessoossocoommeeooooooo 9
R 9
5.1 USADILEY oo 9
5.2 FUNCHONANILYooooeeeeceee oo 10
53 PEIfOIMANCEoooooooiieeeete oo 10
R 11
REFERENCES ooomtttieiimniiee s scescecssesessssssmesesessesesosees oo oo oo 12
APPENDICESooooooiititititttieissceee s cneessees sttt sssee et oeees oo oooeeeoeeeeeeeeeeoo . 13
Appendix A - User Action Notation for the Hopkins Ultraviolet Telescope Prototype 13
Appendix B - Graphical Interface for the Hopkins Ultraviolet Telescope Prototype 42
Appendix C - Simulator for the Hopkins Ultraviolet Telescope Prototypecccooveeveveiveeinnn. 46

iii

LIST OF FIGURES

Figure 1. Architecture of the HCI Prototyping Environmentcccoecveeeiiiverireereneereenenn.
Figure 2. Graphical Interface of the Automobile Prototype ..o,
Figure 3. Top-Level Petri Net of the Automobile Simulatorcc.ccoccieviieiiiiieiiiiceecee,

iv

1.0 INTRODUCTION

The Crew Systems Engineering Branch of the Mission Operations Laboratory of NASA Marshall
Space Flight Center is interested in a dynamic Human Computer Interface Prototyping Environment
for the International Space Station Alpha’s on-board payload graphical displays. On the Space Sta-
tion, new payloads will be added to the on-board complement of payloads in ninety day increments.
Although a payload starts its development and integration processes from two to four years before
launch, a set of new payloads’ displays are due every ninety days. Thus, this drives the need for an
efficient and effective prototyping process. The functional components of a dynamic prototyping
environment in which the process of rapid prototyping can be carried out have been integrated and
evaluated.

Most Graphical User Interface toolkits allow designers to develop graphical displays with little or no
programming, however in order to provide dynamic simulation of an interface more effort is required.
Most tools provide an Application Programmer’s Interface (API) which allows the designer to write
callback routines to interface with databases, library calls, processes, and equipment. These callbacks
can also be used to interface with a simulator for purposes of evaluation. However, utilizing these
features assumes programming language knowledge and some knowledge of networking. Interface
designers may not have this level of expertise and therefore need to be provided with a friendlier
method of producing simulations to drive the interface.

A rapid prototyping environment has been developed which allows for rapid prototyping and evalua-
tion of graphical displays [5]. The components of this environment include: a graphical user interface
development toolkit, a simulator tool, a dynamic interface between the interface and the simulator, and
an embedded evaluation tool. The purpose of this environment is to support the process of rapid pro-
totyping, so it is important that the tools included within the environment provide the needed
functionality, but also be easy to use.

In order to evaluate the usability, functionality, and performance of the environment two prototypes
were developed. The specific tasks which were performed for this statement of work include:

(1) Integration and testing of the automobile interface, simulator, and evaluation
component.

(2) Derivation of the payload prototype requirements from the Hopkins Ultraviolet Tele-
scope (HUT) simulator requirements document.

(3) Development of the payload simulator using PERCNET, a graphical modeling and
knowledge-based simulation development environment.

4) Development of a graphical interface for operation of the payload simulator using
SAMMLI, a graphical interface development toolkit.

(5) Integration and testing of the payload simulator and interface.

The products of this effort include an understanding of the requirements for a rapid prototyping envi-
ronment, an integrated and working prototype of an automobile prototype with embedded evaluation,
and an integrated and tested version of a payload prototype. The following sections of this paper
describe the prototyping environment, the development of the prototypes, and results of the
evaluation.

20 ARCHITECTURE OF THE PROTOTYPING ENVIRONMENT

The Human-Computer Interface Prototyping Environment with Embedded Evaluation capability is
designed to allow a developer to create a rapid prototype of a system and to specify correct procedures
for operating the system [6]. The first component of the architecture is the Graphical User Interface
(GUI) development tool. This tool allows the designer to graphically create the interface of the system
and specify a data source for each object within the display. The simulator tool provides the capability
to create a low-fidelity simulation of the system to drive the interface. The embedded evaluation tool
allows the designer to specify which actions need to be taken to complete a task, what actions should
be taken in response to certain events (e.g., malfunctions), and the time frames in which these actions
should be taken. Each of these components is a separate process which communicates with its peers
through the network server. Figure 1 shows the architecture of the HCI Prototyping Environment.

actons .
-’ Graphical
User ’ User Server —» Simulator
| Interface —
responses
CuUPs

Ly

Designer Graphical

Evaluation
Data

CLIPS Expert System

GUIET { GUI Evaluation Tool)

Figure 1 - Architecture of the HCI Prototyping Environment

During execution of the system, the interface objects send and receive data and commands to and from
the simulator by way of the data server and the simulator provides realistic feedback to the interface
based on user inputs. The server sends the embedded evaluation tool the actions which the user has
taken, all events and activities which have occurred, and the times associated with these items. The
embedded evaluation tool analyzes the actions which have been performed by the user, that is, the
user’s model of the system, against the predefined conceptual model of the designer. The system
identifies which tasks were completed correctly, or not, and provides information to the designer as to
the points in the interaction in which the user’s model of the system did not correspond to the design-
er’s conceptual model of the system.

2.1 Graphical User Interface Development Tool

The Graphical User Interface (GUI) tool for the prototyping environment will allow the designer to
create the display through direct manipulation. This includes the creation of static and dynamic ob-

2

Jects, windows, menus, and boxes. The tool also allows objects created to be linked to a data source.
During execution, the interface objects send and receive data and commands to the simulator by way
of the data server. The user interface objects and their associated data access description are defined
independent of the actual source of data. This first allows the development of the interface and the
simulator to occur concurrently. Second, an interface developed with the GUI tool can later be con-
nected to a high fidelity simulator and then to the actual flight software. The tool used in this study
was SAMMI [9].

2.2 Simulator Development Tool

An evaluation of a prototyped user interface is best supported by a simulation of the system. A simu-
lation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen’s
appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color,
objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system’s
interface. Because of the need to provide dynamic evaluation of an interface, there must be support for
producing active simulations. The high-fidelity training simulators are normally delivered too late to
be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simu-
lator, so that the iterative cycle of refining the human computer interface based upon a user’s
interactions can proceed early in software development. The simulator development tool provides the
capability to develop a low fidelity simulation of a system or process. In addition to producing active
simulations, the simulator tool helps the designer identify and define basic system requirements. The
tool used for simulation in this study was PERCNET [8].

2.3 Graphical User Interface Evaluation Tool

An important aspect of the prototyping process is the ability to evaluate the adequacy of the developed
graphical user interfaces. The embedded evaluation tool communicates with the server to receive
information on the interaction between the user and the system. The types of data collected include
user actions, simulator events and activities, and the times associated with these items. The collected
data is analyzed to determine task correctness, task completion times, error counts, and user response
times. The data is then analyzed to provide feedback as to which features of the interface the user had
problems with and therefore need to be redesigned. The graphical user interface evaluation tool used
was GUIET [6].

2.4 Dynamic, Interactive Interface

This interface will handle communication between the GUI prototyping tool and the simulation tool
during execution. The interface is a server which has been developed using the GUI's Application
Programmer’s Interface. Messages and commands can be sent and received both ways between the
GUI and the simulator. The server also services requests from the embedded evaluation process,
providing information as to which actions the user has taken and which events and activities have
fired.

3.0 AUTOMOBILE PROTOTYPE

In order to evaluate the architecture, an automobile system was prototyped in the environment. An
automobile was chosen because it has sufficient complexity and subsystems’ interdependencies to
provide a moderate level of operational workload. Further, potential subjects in the empirical studies
would have a working understanding of an automobile’s functionality, thus minimizing pre-
experiment training requirements.

An automobile can be considered a system with many interacting components that perform a task. The
driver (or user) monitors and controls the automobile’s performance using pedals, levers, gauges, and
a steering wheel. The dashboard and controls are the user interface and the engine is the main part of

3

the system. Mapping the automobile system to the simulation architecture calls for a model of the
dashboard and driver controls and a separate model of the engine. The main component of the auto-
mobile is the engine which responds to inputs from the driver (e.g. the driver shifts gears or presses the
accelerator pedal) and factors in the effects of the environment (e.g. climbing a hill causes a decrease
in the speed of the car). The driver changes inputs to obtain desired performance results. If the car
slows down climbing a hill, pressing the accelerator closer to the floorboard will counteract the effects
of the hill.

The dashboard and controls have been modeled using Sammi [9], a graphical user interface develop-
ment tool developed by Kinesix. Two options have been investigated for simulation: petri nets and
rules. Petri nets provide a graphical model of concurrent systems. The petri net system which has been
used is PERCNET [8], developed by Perceptronics. PERCNET is designed to be used as a knowledge-
based graphical simulation environment for modeling and analyzing human-machine tasks. With
PERCNET, task models are developed using modified petri nets, a combination of petri nets, frames,
and rules. The rule based system which has been used is CLIPS [1], a rule based language primarily
used for the design of expert systems, developed by NASA. CLIPS executes in a non-procedural
fashion making it ideal for representing random and concurrent events. The automobile system has
been prototyped using both the petri net and rule-based systems as simulators and comparisons were
made based upon functionality, usability, and performance [7].

3.1 Graphical User Interface

The interface was implemented using Sammi, which provided a graphical means by which to develop
the interface. Sammi combines the functions of a graphical user interface toolkit with full network
communications support, providing both client/server and peer-to-peer communication options. The
format editor of Sammi was used to develop the static automobile display. The display’s functionality
was tested by building a simulator of the engine and allowing the two processes to communicate
through interprocess communication. The graphical interface for the automobile prototype is shown
in figure 2.

TOTAL HILES

TRIP MILER
RESET

Figure 2 - Graphical Interface for the Automobile Prototype

4

3.2 Low Fidelity Simulator

The automobile simulator was modeled using PERCNET, a very powerful system analysis software
package designed by Perceptronics, Inc. It provides an easy-to-use, graphical interface which allows
users to quickly lay out a petri net model of the system. PERCNET uses "modified" petri nets, which
allow each state to describe pre-conditions for state transitions, modify global variables, perform
function calls and maintain a global simulation time. Figure 3 shows the top-level petri net of the
automobile simulator.

Figure 3 - Top-Level Petri Net of the Automobile Simulator

The starter is the component that is activated by the turning of the key. Before the starter can begin
working, however, the key should be turned on, the driver must be wearing his/her seat belt, the car
must be in neutral and the battery must have a sufficient charge to start the starter. When all three
pre-conditions are true, the starter is activated and control advances to the right in the Petri net. Once
the starter has been activated, it must do its part to start the automobile. The starter allows electricity
to flow into the distributor where it is channeled into the spark plugs. As long as the starter is func-
tioning, the distributor and spark plugs are activated. Finally, as long as the spark plugs and distributor
are working properly and there is gasoline, the spark from the spark plugs ignites the gasoline mixture
in the engine and ignition is achieved. Now that ignition has been accomplished, the engine is
running. The concentric circles representing the engine_running activity in Figure 3 indicate that the
state is shown in a sub-net.

The petri net representing the automobile passes from the ignition portion to the engine running state
and remains in the running state until some condition causes the engine to stop running. The engine
will stop running if the engine runs out of gas, runs out of oil, the temperature rises above a certain
threshold, the key is turned off, the engine stalls (when the automobile is in some gear and the rpms
fall below a threshold amount), the battery loses its charge or the fuel pump, oil pump, spark plugs or
alternator fail.

The major components of the engine modeled are: fuel pump, oil pump, water pump, distributor, spark
plugs, starter, battery, alternator, and fan. The condition of these components is modeled using a
boolean variable indicating either that they are functioning or they are not. The boolean variables are
then used as conditions within events occurring during the simulation. Details of the Petri Net im-
plementation can be found in [5]. '

33 Interface Evaluation Rules

Formative evaluation is conducted through usability studies. Given a functional prototype and tasks
that can be accomplished on that prototype, the designer observes how users interact with the proto-
type to accomplish those tasks in order to identify improvements for the next design iteration.
Evaluation of the interaction is measured in terms of specific parameters including: time to learn to
use the system, speed of task performance, rates and types of errors made by users, retention over time,
and subjective satisfaction [10]. Analysis of this information will assist in redesign of the system.

The conceptual model of a designer is a description of the system and how the user should interact
with it in terms of completing a set of tasks [4]. The user’s mental model is a model formed by the
user of how the system works, and it guides the user’s actions [2]. Most interaction problems occur
when the user has an inaccurate model of the System or when the user’s model of a system does not
correspond with the designer’s conceptual model of the system. The evaluation approach which will
be discussed in this paper evaluates the user’s mental model of the system against the designer’s
conceptual model.

process, user actions are continuously associated with a set of possibly changing goals. Once a goal
has been identified, the user’s action in response to that goal are evaluated to determine if a user has
performed a task correctly. Tasks may be performed at three levels: expert, intermediate, and novice.

The goal of GUIET [6] is to provide for dynamic evaluation of user actions within the HCI Prototyp-
ing Environment. Using GUIET, the process of formative evaluation has more flexibility and takes

based conceptual model. If a new interface is prototyped, the only change that needs to be made with
GUIET is changing the knowledge base.

The tasks which the user are asked to perform with the automobile prototype can be divided into two
categories: driving the car (i.e., using the controls) and responding to events (e.g., environmental and
maintenance). The tasks measured include:

e Starting the car

® Driving forward (including changing gears)
® Driving backward

¢ Turning

* Stopping (at stop signs, lights, etc.)

¢ Parking the car

e Increasing and decreasing speed [Responding to speed limit changes]
¢ Driving uphill and downhill [Responding to hill events]

e Performing maintenance [Responding to maintenance events]

¢ Responding to environmental conditions

The events which can occur while the user is driving include environmental condition events (e.g.,
rain, snow, fog, and clear weather), time of day events (e.g., day and night), terrain changes (uphill and
downhill), speed limit changes, and maintenance problems (e.g., gas, oil, battery, alternator, and en-
gine). In addition to the events, the participant is given a set of instructions that must be followed.
These are in the form of driving directions (e.g., drive 5 miles north and park the car).

Driving the car consists of manipulating graphical objects on the screen. For each of the tasks de-
scribed above, the designer has determined a set of correct actions that must be made to complete the
task. For example, the actions which must be taken for starting the car include:

Lock the seatbelt
Release emergency brake
Depress the brake
Depress the clutch

Put the gear in neutral
Turn the key on

QAL

Task correctness is evaluated based mainly on three evaluation criteria: the existence of certain ac-
tions, the sequencing of actions, and the time associated with the completions of the actions or task.
An integer clock counter is used to indicate the action or event sequence. In the beginning of evalu-
ation, the clock is reset to zero. Every subsequent action taken by the driver would increment the clock
by one. Action sequence is important for many driving maneuvers. For example, clutch must be
engaged before shifting gears. The evaluation process evaluates the correctness and effectiveness of
a driver’s interactions with the graphical user interface. User performance can be classified into three
levels for most tasks - expert, intermediate, and novice. There may also be no response to a task. A
counter is designated for each performance level. Every time a sequence of user actions is classified
at a particular level, the associated counter will be incremented by one. The purpose of the evaluation
is not to classify or evaluate users, but to evaluate the interface. The classification of users into cate-
gories is done to identify the level at which the users are interacting with the system. The goal is to
have most, if not all, interactions at what the designer would consider the expert level. If users are not
interacting at this level, it is the interface which must be enhanced to improve user performance.

An evaluation rule is designed for each performance level. After a sequence of actions is completed,
it will be evaluated based on the rules for the three performance levels. However, only one of the rules
would succeed. The rules are organized in a way that the expert level would be tried first, then the
intermediate level, and then the novice level. Once a rule has been successfully fired, this sequence of
actions will be discarded. The prioritization of these rule is achieved through the salience values of
CLIPS. Rules for different tasks may contain different evaluation criteria. It depends on the design-
er’s conceptual model of how he/she feels the task needs to be completed.

4.0 HOPKINS ULTRAVIOLET TELESCOPE (HUT) PROTOTYPE
4.1 Interface and Simulator Requirements

An iterative Human Computer Interface Prototyping Process was used to develop the onboard payload
displays for the Hopkins Ultraviolet Telescope (HUT). The process began with the identification of
known requirements. The requirements gathering phase allowed the development team to collect
many of the documents explaining the components and operation of the HUT experiment. These

.

descriptions of the system differed in the amount of detail presented and in the intended audience. The
documents included the Astro Observatory System Overview, the Hopkins Ultraviolet Telescope
Handbook, the HUT Payload Operating Procedures for Astro 2, and the Payload Crew Training Com-
plex Experiment Simulator Requirements Document. They described the purpose and history of the
experiment, explained in detail each system component, and outlined crew procedures. It was found
that while this wide range of information did not always appear pertinent to the payload display de-
velopment, a more complete understanding of the system was very insightful when faced with design
decisions during implementation.

Integration and analysis of the requirements proceeded using the available documents to develop a
single, coherent view of each component and the functions of the experiment. The relationships
between components and functions were identified and the general operating procedures were
outlined. User-centered functional analysis, task analysis, user analysis and operational flows were
each used to develop this complete view.

User-centered functional analysis looked at the functions of the system and the expectations of user
performance. A deliberate effort was made to keep analysis sufficiently general so that a high-level
view of the system could be developed. The main functions of the HUT experiment are to initialize
the telescope system and then operate the telescope. The user will be expected to manipulate GUI
objects to monitor, calibrate and adjust the telescope subsystems (i.e., power, heaters, vacuum pumps,
mirrors, and doors), the spectrometer and camera.

During task analysis, the main functions of the system were described in greater detail. System pro-
cedures were also incorporated in analysis and this gave a clearer understanding of the importance of
the relationships between components and procedures. For example, it was at this stage that devel-
opers understood the difference between the active and inactive states of the telescope. During launch
and de-orbit, the telescope is in an inactive state; however, in this state, certain components remain
active (e.g., some power is provided to vacuum ion pumps which maintain the vacuum within the
spectrometer at all times). This implies that there is some experiment monitoring that goes on even
when the telescope is inactive. This also implies that certain display components may not be available
at all times (i.e., when the experiment is inactive).

User analysis identified the users of the system as astronauts who are necessarily astronomers. There
would be a small number of potential users and these users would undergo rigorous training and
evaluation with the interface later in development. The users main focus will be on performing the
operating procedures. An on-line procedure reference will be helpful in the final interface. A great
deal of time is spent monitoring values (e.g., temperatures, pressure and electrical currents). Much of
this monitoring can be built into the display. Simple color changes or popup windows might be used
to reduce the amount of monitoring.

The documentation was also used to develop operation flows of the system. These flows were used in
the implementation phase of prototyping to develop the simulator. The simulator provides "live"”
feedback to the user interface during evaluation.

A formal design representation was created using the User Action Notation (UAN) as described in [3].
The UAN provided a means of describing the user actions required to perform tasks identified during
task analysis. UAN also allows developers to describe interface feedback and identify interface states.
This is the first formal requirements document produced in the process. The complete notation for
operation of HUT is provided in Appendix A.

4.2 Graphical User Interface

The graphical interface for HUT was implemented using SAMMI. Two steps were used to implement
the display prototypes. The first of these steps involved deciding on the design of the background and

placement of display object groupings. Using the UAN and previous analysis results, the main system
components were identified as: power, heaters, mirrors, pumps, spectrometer, camera and television.
Each of these components had sub-components that required arrangement within the component
display. For example, study of the operating procedures revealed that the spectrometer has fields for
mode, mask, minimum/maximum amplitude and minimum/maximum width. These fields were not
often accessed but when accessed, the user is asked to view all six values in order. These fields were
grouped within the spectrometer display. Component grouping proceeded similarly. The vacuum
pumps, which maintain the vacuum within the spectrometer, must be constantly monitored and are
often switched on and off while calibrating the spectrometer. The vacuum pump and spectrometer
displays were placed next to each other.

The second prototype iteration involved deciding exactly how to represent each of the display objects.
Factors contributing to the final design included frequency of access, type and range of values, and
aesthetic appearance. The initial telescope display appeared very "busy" after the initial
implementation. An attempt was made at this stage to modularize the display and reduce the number
of objects visible at one time. Infrequently accessed objects were implemented with pop-up windows.
The complexity of the operating procedures encouraged the addition of a "procedure window" that
would serve as a quick-reference describing the steps of each procedure. The graphical interface for
HUT along with the various pop-up windows can be found in Appendix B.

4.3 Low Fidelity Simulator

The simulator for the HUT prototype was developed using PERCNET. The requirements for this
simulator were extracted from the Payload Crew Training Complex Experiment Simulator Require-
ments Document. The functions of the system were identified along with their inputs and outputs.
This activity of requirements gathering occurred concurrently with the interface requirements gather-
ing and analysis discussed in section 4.1. The main system components modeled were power, heaters,
mirrors, pumps, spectrometer, camera, and the dedicated experiment processor. The inputs an outputs
of each component were modeled, in addition to the system state changes which result from user

actions (e.g., survival, observation, etc.). Detailed design of the simulator can be found in Appendix

5.0 EVALUATION

The functional components of the environment were integrated successfully and provided the needed
functionality. The suite of tools provided for development within of the environment were easy to
learn and use. Although they were all different interfaces, they were all graphical. The ideal envi-
ronment would provide a consistent interface; however, there are no currently available tools which
provide all of the support needed for rapid prototyping. The only real problem within the environment
was performance. The next sections describe the usability, functionality, and performance of the
system in more detail.

5.1 Usability

Most features of the environment are easy-to-learn and use While some knowledge of the X win-
dowing system, petri-net theory, and rule-based languages would benefit designers, much could be
done with very minimal knowledge. One difficulty in working with the simulator tool, PERCNET,
was the lack of available documentation on the Tool Command Language (TCL). All function calls,
calculations, communication and ad-hoc programming are done using this language. Perceptronics
provides only minimal documentation on the use of the language within PERCNET making it very
difficult to perform anything more than the most basic operations.

5.2 Functionality

The functionality for developing prototypes within the environment is provided. As this project be-
gan, PERCNET was a closed package, that is, there was no provision for communicating with other
applications. NASA contracted Perceptronics to modify PERCNET to allow for such a feature. The
final result was a revision of PERCNET which would allow communication with other applications
through the use of sockets. Applications are allowed to request that global variables be retrieved
and/or modified. PERCNET essentially opened it’s blackboard (i.e., global data store) to other
applications. The other application in this case being the server. With this modification and the
development of the tool GUIET, all needed functionality was complete.

53 Performance

The performance within the Petri Net architecture was not acceptable for real-time interface
simulation. Interfaces running within this architecture exhibit a very slow response rate to user actions
when PERCNET is executing within its subnets. The PERCNET execution also used excessive
amounts of swap space and memory which also affected the refreshing of displays. '

Early analysis attempted to find the exact cause of the poor performance; however, only limited work
could be done without access to PERCNET’s source code. Since PERCNET’s code was unavailable,
we could only speculate about what was actually happening to cause the slow responses. It was
determined that the cause of much of the problem was that PERCNET was trying to do too much. In
the PERCNET simulation architecture, PERCNET is actually the data server for the environment.
The global blackboard is maintained within PERCNET. The server only provides a mechanism for
passing information between PERCNET and other applications. The server is connected to
PERCNET by a socket and the server is actually on the "client" end of the connection-oriented socket.
The server establishes connections with PERCNET and Sammi and then alternately receives
information from each. Any data or commands received from Sammi are passed immediately to
PERCNET. Commands from PERCNET for Sammi are passed immediately through, as well.
Finally, the server sends Sammi copies of all variables. Since PERCNET is the blackboard server, as
well as the simulator, PERCNET’s performance would naturally be affected by the added burden.
Lastly, the method provided for sending variables to the server was terribly inefficient. When a cal-
culation was performed in the simulation model for a variable that was needed by the interface, that
variable was passed to the server whether or not it’s value had changed from the previous iteration. No
mechanism was provided for restricting the number of redundant values passed across the communi-
cation link. As a result, PERCNET passed every value back to the server when only a few had actually
changed.

In order to investigate other alternatives to simulation, a rule based architecture was developed [7].
Each of the limitations discussed above was addressed in the design of the server and blackboard in
the rule-based architecture. The server program was divided into three portions: blackboard manage-
ment, Sammi routines, CLIPS routines. The Sammi and CLIPS routines are provided to communicate
with the respective applications. These routines map data into a special "blackboard entry" form and
pass the data to the blackboard management routines. The blackboard routines also return information
to the Sammi and CLIPS routines for routing back to the applications. The blackboard management
routines require that each application (many more applications may be supported) register itself
initially. Applications are assigned application identification numbers which are used for all subse-
quent transactions. This application number allows the blackboard to closely monitor which variable
values each application needs to see. It also provides a mechanism for installing a priority scheme for
updates.

After several functions were added to the rule based model, it performed the same functions as the
Petri Net simulator. If a new system is prototyped, the only changes which would be needed are to the
knowledge base. The communication link developed for the Sammi-CLIPS architecture uses the
blackboard paradigm to improve modularity, flexibility, and efficiency. This form of data manage-

10

ment stores all information in a central location (the blackboard), and processes communicate by
posting and retrieving information from the blackboard. The server manages the blackboard, allowing
applications to retrieve current values from the board and to request that a value be changed. The
Server accepts write requests from valid sources and changes values. The comparison of the two
architectures goes much further than comparing the two simulation designs. The design of the com-
munication link significantly affects the flexibility and performance of the architecture.

6.0 Conclusions

Various applications are provided for development within the HCI Prototyping Environment. A de-
veloper can rapidly create a prototype of a system and evaluate it with end users by conducting

11

10.

REFERENCES
CLIPS Reference Manual, NASA Johnson Space Flight Center, Houston, Texas, 1993.
Eberts, Ray, User Interface Design, Prentfcc Hall, Englewood Cliffs, New Jersey, 1994,

Hix, Deborah, and Hartson H. Rex, Developing User Interfaces: Ensuring Usability Through
Product and Process, John Wiley & Sons, Inc., New York, 1993.

Mayhew, Deborah, Principles and Guidelines in Software User Interface Design, Prentice
Hall, Englewood Cliffs, New Jersey, 1992,

Moore, Loretta, "Assessment of a Human Computer Interface Prototyping Environment," Fi-
nal Report, Delivery Order No. 16, Basic NASA Contract No. NAS8-39131, NASA Marshall
Space Fight Center, Huntsville, AL, 1993.

Moore, Loretta A., Chang, Kai, Hale, Joseph P., Bester, Terri, Rix, Thomas, and Wang, Yao-
wen, "Rule Based Design of Conceptual Models for Formative Evaluation," Paper presented at
the Third Conference on CLIPS, Houston, Texas, September 12-14, 1994.

Moore, Loretta A., Price, Shannon W., and Hale, Joseph P., "Simulation in a Dynamic Proto-
typing Environment: Petri Nets or Rules?" Paper presented at the Third Conference on CLIPS,
Houston, Texas, September 12-14, 1994,

PERCNET User’s Manual, Perceptronics Inc., Woodland Hills, California, 1992.
Sammi API Manual, Kinesix Corporation, Houston Texas, 1992.

Shneiderman, Ben, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Second Edition, Addison-Wesley, Reading, Massachusetts, 1992.

12

APPENDIX A - User Action Notation for the Hopkins Ultraviolet Telescope

13

HUT

HUT

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

INITIALIZE

OPERATE

PREPARE FOR DEORBIT

14

INITIALIZE

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

SURVIVAL

SURVIVAL

INITIAL ACTIVATION

= READY

(DEACTIVATE

SURVIVAL

| OBSERVATION)

OPERATE

READY

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(REACTIVATE

mode = READY

(OBSERVATION

| TEST) *

DEACTIVATE)

PREPARE FOR DEORBIT

mode = SURVIVAL

INTERFACE STATE

INTERFACE FEEDBACK
+28V BUS OFF
HEATERS OFF

USER ACTIONS
command (+28V BUS OFF)
command (HEATERS OFF)

check_vacuum_pump (1, ON,
-5.00 torr, 0.15A)

check_vacuum_pump (2, OFF,
-7.13 torr, 0.00A)

mode = SHUTDOWN

HUT - INITIALIZE

INITIALIZE

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

SURVIVAL

mode = SURVIVAL

INITIAL ACTIVATION

mode = READY

(DEACTIVATE

mode = SURVIVAL

| OBSERVATION)

16

mode = READY

5

"SURVIVAL

USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

HEATER_POWER_ON

command (+28V BUS ON) +28V BUS = ON mode = SURVIVAL

check_vacuum_pump (1, ON,
-5.00t, 0.15A

check_vacuum_pump (2, OFF,
-7.13t, 0.00A)

| INITIAL_ACTIVATION
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

{mode = SURVIVAL
&& check (+Y SHUTTER_DOOR CLOSED)
&& check (-Y SHUTTER_DOOR CLOSED)
&& check (SMALL_APERTURE _

DOOR CLOSED)
| && check (CCTV source HUT)):

1 MAIN_POWER_ON MAIN POWER = ON
command (RESET DEP) DEP_STATE = RESET
command (LOAD DEP) DEP_STATE = LQAD Inactive 8 Minutes
DEP = ACTIVE DEP = ACTIVE
command (SP POWER ON) SP POWER = ON i
LOAD_SP SP = LOADING Inactive 3 Minutes ?
SP = READY

check (HEATER_MODE = SLAVED)

check (ELECTRONICS_HEATER = ON)

TEST_CAMERA TV_FUNCTIONALITY
_TEST = COMPLETE

MIRROR_BACKLASH_MOVEMENT MIRROR_BACKLASH =
COMPLETE ;

OBSERVATION_VERIFY

EXPERIMENT_OUTGASSING OUTGASSING = ?
COMPLETE

;| TEST_SPECTROMETER mode = READY

DEACTIVATE

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(MAIN_POWER = ON
&& DEP = ACTIVE) :

command (SHUTDOWN)

DEP = INACTIVE
DEP_STATE = OFF

check (ILLUMINATION_LAMP OFF)

command (SP_POWER OFF)

SP_POWER = OFF

command (MAIN_POWER OFF)

MAIN_POWER = OFF

check_vacuum_pump (1, ON,
-5.00 torr, 0.15 A)

check_vacuum_pump (2, OFF,
-7.13 orr, .00 _

OBSERVATION

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(TV_FOCUS_ALIGN

| SPECTROMETER_FOCUS

| CALIBRATE_APERTURE_& BOS

| CALIBRATE_12ARCSEC_CTR

| CALIBRATE_11x60ARCSEC_CTR)

SCIENCE_OBSERVATION

HEATER_POWER ON

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

check_vacuum_pump (1, ON,
-5.0 torr, —)

command (HEATERS ON)

HEATERS ON

check (HEATER_CURRENT <
16.5 A)

check (HEATER_CONV_
CURRENT 0.110 - 0.180 A)

check (STRUCTURE_
TEMPERATURE > 0°C)

check (ELECTRONICS _
TEMPERATURE >= -10°C))

check_vacuum_pump (1, ON,
—-, 0.35 A)

WAIT (30 seconds)

MAIN_POWER_ON

USER ACTIONS

INTERFACE FEEDBACK

command (MAIN POWER ON)

MAIN POWER = ON

check (+56V (5.0-5.5V))

check (+12V (11.5-12.7V))

check (-12V (-11.9- -12.9 V))

check (+18V (+17.8 - 19.6 V))

LOAD_SP

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

command (LOAD SP)

SP = LOADING

Inactive 3 Minutes
SP = READY

check (SP MODE HISTOGRAM)

‘check (SP MASK 0)

check (MIN AMP (8))

check (MAX AMP (62))

check (MIN WIDTH (2))

check (MAX WIDTH (20))

TEST_CAMERA

USER ACTIONS

INTERFACE FEEDBACK

command (EARTH_BOS DISABLE)

EARTH_BOS = DISABLED

check (FILTER OFF)

check (SUN_BOS ENABLED)

check (SMALL_APERTURE_ DOOR
CLOSED)

check (+Y_SHUTTER_DOOR CLOSED)

check (-Y_SHUTTER_DOOR CLOSED)

command (CAMERA_POWER ON)

CAMERA_POWER = ON

check (EXPOSURE 0, CAMERA_HV 0,
ZOOM = OFF, WHITE_LEVEL = 0,
BLACK_LEVEL = 0, SOFT INT = OFF,
FORCE_SYNC = OFF)

command (TV_MODE FIELD)

TV_MODE = FIELD

command (FILTER ND2)

FILTER = ND2

command (CAMERA_HV 5)

CAMERA_HV =5

command (ILLUMINATION_LAMP ON)

ILLUMINATION_LAMP = ON

WAIT (FOCcC aknowledge)

command (EXPOSURE 5)

EXPOSURE =5

command (BLACK_LEVEL x) *adjust*/

BLACK_LEVEL = x

command (WHITE_LEVEL x) ladjust/

WHITE_LEVEL = x

command (SOFTWARE_INTEGRATION ON)

SW_INTEGRATION = ON

MONITOR CCTV /* visual ¥/

Center of Images Brightens

command (SOFTWARE INTEGRATION OFF)

SW_INTEGRATION = OFF

command (TV_MAGNITUDE 10)

TV_MAGNITUDE = 10

MONITOR CCTV /* visual */

Fiducials Dim

command (TV_MAGNITUDE 12)

TV_MAGNITUDE = 12

TEST_TV_MODES

command (ILLUMINATION_LAMP OFF)

ILLUMINATION_LAMP = OFF

command (TV_MAGNITUDE = -5)

TV_MAGNITUDE = -5

command (EARTH_BOS ENABLE)

EARTH_BOS = ENABLED

TV_FUNCTIONALITY _
TEST = COMPLETE

OBSERVATION_VERIFY

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

command (PREVIEW activation
sequence 15)

SEQ 15 Display

command (DISPLAY current status)

CURRENT SEQ Display

command (SETUP “"dummy"
observation)

OBS SEQ Form Display

command (LOCATE_TYPE MANUAL)

LOCATE_TYPE = MANUAL

MOVE_CURSOR

CURSOR_MOVEMENT

command (BEGIN)

DEP_STATE = OBSERVE

check (time decreasing)

1 time = 600 seconds

WAIT (150 seconds)

time = 450 seconds SP_MASK
and SP_MODE change
automatically

WAIT (150 seconds)

time = 300 seconds SP_MASK
and SP_MODE change
automatically

command (QUIT)

DEP_STATE = SLEW

command (TV_MODE SPECTRUM)

TV_MODE = SPECTRUM

command (ENABLE_DOORS)

EXPERIMENT_OUTGASSING

NONE

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(DEP = READY):

command (SMALL_APERTURE_DOOR | SMALL_APERTURE_DOOR = OPEN

50cm~2)

command (+Y_SHUTTER_DOOR
OPEN

+Y_SHUTTER_DOOR = OPEN

command (-Y_SHUTTER_DOOR
OPEN

-Y_SHUTTER_DOOR = OPEN

OUTGASSING = COMPLETE

e S e

TEST_SPECTROMETER

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(OUTGASSING = COMPLETE
&& TV_FUNCIONALITY_
TEST = COMPLETE) :

check (SP_POWER ON, SP_MODE 4,
SP_MASK 0, MIN_AMP 8,
MAX_AMP = 62, MIN_WIDTH =2,
MAX_WIDTH = 20)

check_vacuum_pump (2, ON,
-5.70 torr, 0.12A)

command (VACUUM_PUMP1 OFF)

check_vacuum_pump (1, OFF,
-7.03 torr, 0.00 A)

check_vacuum_pump (2, OFF,
-7.13 torr, 0.00 A)

command (DETECTOR ON)

DETECTOR = ON

check (MCP_HV_ADJUSTMENT
0 2.63 +0.050)

check (PHOS_HV_ADJUSTMENT
0 6.010.075)

check (CCTV noise level) /*auricular */

check (PHOTON < 10)

WAIT (30 seconds)

command (MCP_HV x) /* adjust */

MCP_HV = x

WAIT (30 seconds)

command (PHOS_HV x) /* adjust */

PHOS_HV =x

WAIT (30 seconds)

command (CALIBRATION_LAMP ON)

CALIBRATION_LAMP = ON

WAIT (30 seconds)

command (SP_MODE SINGLE_SCAN)

SP_MODE = SINGLE_SCAN

WAIT (5 minutes)

command (SP_MODE = HIGH_
TIME_RESOLUTION)

SP_MODE = HIGH_TIME
RESOLUTION

command (CALIBRATION_LAMP OFF)

CALIBRATION_LAMP = OFF

command (DETECTOR OFF)

DETECTOR = OFF

command (SET DETECTOR DEFAULTS)

command (DETECTOR ON)

DETECTOR = ON

check_vacuum_pump (1, ON
-5.00 torr, 0.15A)

check_vacuum_pump (2, OFF,
-7.13 torr, 0.00 A)

check_vacuum_pump (1, ON,
-5.00 torr, 0.15 A)

TV_FOCUS_ALIGN

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE
(WUPPE = inoperative
&& CCTV souce is HUT) :
command (PREVIEW SEQ ##) Display F&A Target #1
command (EARTH_BOS DISABLE) EARTH_BOS = DISABLED
IPS MOVEMENT
command (LOCATE_TYPE NONE) LOCATE_TYPE = NONE
command (TV_MODE DOWN ZOOM) TV_MODE = DOWN ZOOM
command (SOFTWARE_ SW_INTEGRATION = ON
INTEGRATION ON)
RECORD IMAGE SIZE DATA
(command {x #) /* adjust */ Ax=#
command (MIRROR_MODE MOVE) MIRROR_MODE = MOVE
command (MIRROR_MODE STOP))* | MIRROR_MODE = STOP
SET_MIRRORS
command (MIRROR_MODE FOCUS) MIRROR_MODE = FOCUS
command (EARTH_BOS ENABLE) EARTH_BOS = ENABLED
SET_MIRRORS
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
(command (-Z = nnnn) -Z = nnnn
| command (-Y+Z = nnnn) -Y+Z = nnnn

I command (+Y+Z = nnnn))* +Y+Z = nnnn

command (START)

Inactive during motio

command (MIRROR_MODE 0) | MIRROR_MODE =0

SPECTROMETER_FOCUS

USER ACTIONS

INTERFACE FEEDBACK INTERFACE STATE

(HUT spectrometer focus
target acquired
&& DEP_STATE = OBSERVE) :

command (SOFTWARE_
INTEGRATION ON)

SOFTWARE_INTEGRATION = ON

record (+Y+Z)

record (START_TIME)

WAIT (200 seconds)

record (STOP_TIME)

command (Ax = #)

Ax=#

command (MIRROR_MODE MOVE)

MIRROR_MODE = MOVE

(command (MIRROR_MODE STOP))*

MIRROR_MODE = STOP

command (MIRROR_MODE FOCUS)

MIRROR_MODE = FOCUS

command (SOFTWARE_
INTGRATION OFF)

CALIBRATE_APERTURE_&_BOS

SOFTWARE_INTEGRATION = OFF

USER ACTIONS

4
INTERFACE FEEDBACK | INTERFACE STATE

(EARTH_BOS = ENABLED
&& DETECTOR = OFF) :

command (SOFTWARE_INTEGRATION
ON)

SW_INTEGRATION = ON

command (TV_MAGNITUDE = #) Fadjust */

TV_MAGNITUDE = #

(command (SLIT_WHEEL n)

command (WHITE_LEVEL = x) /*adjust */

WHITE_LEVEL = x

command (BLACK_LEVEL = x) /* adjust */

BLACK_LEVEL =x

WAIT (100 seconds)) n = 3,2,1,7,6,5,6,7,1,2,3 Aperture_Centers = COMPLETE :

CALIBRATE_12ARCSEC CTR

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(Aperture_Centers = COMPLETE
&& DEP_STATE = OBSERVE
&& Aperture 1 has moved

into place) :

IPS MOVEMENT

command (SLIT_WHEEL 9x120)

SLIT_WHEEL = 9x120

command (SLIT_WHEEL 30 diam)

SLIT_WHEEL = 30 diam

check (PITCH/YAW ERROR <= %0.5)

IPS MOVEMENT

CALIBRATE 1 1x60ARCSEC CTR

t

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(Aperture_Centers = COMPLETE
&& DEP_STATE = OBSERVE
&& Aperture 6 has moved

into place) :

IPS MOVEMENT

command (SLIT_WHEEL 18x120
CAF2 FILTER)

SLIT_WHEEL = 18x120
CAF2 FILTER

command (SLIT_WHEEL 18x120)

SLIT_WHEEL = 18x120

check (PITCH/YAW ERROR <= +0.5)

IPS MOVEMENT

SCIENCE_OBSERVATION

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(mode = READY

&& HUT - only operations

&& Payload Bay floodlights
OFF

(command (PREVIEW SEQ ##))*

Display SEQ ##

command (CURRENT)

command (SETUP)

DEP_STATE = LOCATE

IPS MOVEMENT

command (BEGIN)

DEP_STATE = OBSERVE

((command (PAUSE)

DEP_STATE = PAUSE

command (PROCEED))

DEP_STATE = OBSERVE

| command (PREVIEW SEQ ##))*

Display SEQ ##

((time = 0)

DEP_STATE = SLEW

| (command (PAUSE)

DEP_STATE = PAUSE

command (QUIT))

DEP_STATE = SLEW

| command (QUIT))

DEP_STATE = SLEW

command (VACUUM_PUMP_1 ON)

check_vacuum_pump (1, ON,
-5.00 torr, 0.15 A)

HUT - OPERATE

OPERATE
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
(REACTIVATE mode = READY
(OBSERVATION
ITEST) *
DEACTIVATE) mode = SURVIVAL

29

REACTIVATE
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

(mode = SURVIVAL

&& +28V_BUS = ON

&& +28V_CURENT (0.2-0.3A)

&& HEATERS ON

&& HEATER_CURRENT < 16.5A

&& check_vacuum_pump (1, ON
-5.00 torr, 0.15A)

&& check_vacuum_pump (2, OFF,
-7.13 torr, 0.00A) :

MAIN_POWER_ON MAIN_POWER = ON

command (RESET DEP) - DEP_STATE = RESET

command (LOAD DEP) DEP_STATE = READY Inactive 8 minutes
DEP = ACTIVE

command (SP_POWER ON) SP_POWER = ON
LOAD_SP SP = LOADED
check (HEATER_MODE = SLAVED)
check (ELECTRONICS_HEATER = ON)

CAMERA_POWER_ON CAMERA_POWER = ON
DETECTOR_POWER_ON DETECTOR = ON
SET_MIRROR mode = READY

OBSERVATION
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
(TV_FOCUS_ALIGN

| SPECTROMETER_FOCUS

| CALIBRATE_APERTURE_&_BOS

| CALIBRATE_12ARCSEC_CTR

| CALIBRATE_11x60ARCSEC_CTR)
SCIENCE_OBSERVATION

TEST

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(CAMERA_SENSITIVITY_TEST

| REDUCED_APERTURE_50

| REDUCED_APERTURE_1

| EXPERIMENT_OUTGASSING

| MONITOR_SAA)

DEACTIVATE

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(MAIN_POWER = ON
&& DEP = ACTIVE) :

command (SHUTDOWN)

DEP = INACTIVE
DEP_STATE = OFF

check (ILLUMINATION_LAMP OFF)

command (SP_POWER OFF)

SP_POWER = OFF

command (MAIN_POWER OFF)

MAIN_POWER = OFF

check_vacuum_pump (1, ON,
-5.00 torr, 0.15 A)

check_vacuum_pump (2, OFF,
-7.13 torr, 0.00 A)

MAIN_POWER ON

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

command (MAIN POWER ON)

MAIN POWER = ON

check (+5V (5.0 - 5.5 V))

check (+12V (11.5- 12.7 v))

check (-12V (-11.9--12.9 V)

check (+18V (+17.8-19.6 V)

LOAD_SP

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

command (LOAD SP)

SP = LOADING

Inactive 3 Minutes
SP = READY

check (SP MODE HISTOGRAM)

check (SP MASK 0)

check (MIN AMP (8))

check (MAX AMP (62))

check (MIN WIDTH (2))

check (MAX WIDTH (20))

CAMERA_POWER_ON

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

command (CAMERA_POWER ON) CAMERA_POWER = ON

check (EXPOSURE = 0, CAMERA_HV = 0,
ZOOM = OFF, WHITE_LEVEL = 0,
BLACK_LEVEL =0,
SOFTWARE_INTEGRATION = OFF,
FORCE_SYNC = OFF)

command (ENABLE_DOORS) NONE

command (+Y_SHUTTER_DOOR OPEN) +Y_SHUTTER_DOOR = OPEN

command (-Y_SHUTTER_DOOR OPEN) -Y_SHUTTER_DOOR = OPEN

WAIT (3 minutes) -

DETECTOR_POWER_ON
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
command (TV_MODE SPECTRUM) TV_MODE = SPECTRUM

check_vacuum_pump (1, ON,
-5.00 torr, 0.15A)
command (VACUUM_PUMP_1 OFF)
check_vacuum_pump (1, OFF,
=7.03 torr, 0.00 A)
check_vacuum_pump (2, OFF, t
-7.13 torr, 0.00 A)
command (SET DETETOR DEFAULTS)

command (DETECTOR ON) DETECTOR = ON
command (VACUUM_PUMP_1 ON)

check_vacuum_pump (1, ON
-5.00 torr, 0.15 A

SET_MIRRORS

USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
(command (-Z = nnnn) -Z = nnnn

| command (-Y+Z = nnnn) -Y+Z = nnnn

I command (+Y+Z = nnnn))* +Y+Z = nnnn

command (START) Inactive during motio
command (MIRROR_MODE 0) | MIRROR_MODE = 0

TV_FOCUS_ALIGN

USER ACTIONS

INTERFACE FEEDBACK

(WUPPE = inoperative
&& CCTV souce is HUT) :

INTERFACE STATE

command (PREVIEW SEQ ##)

Display F&A Target #1

command (EARTH_BOS DISABLE)

EARTH_BOS = DISABLED

IPS MOVEMENT

command (LOCATE_TYPE NONE)

LOCATE_TYPE = NONE

command (TV_MODE DOWN ZOOM)

TV_MODE = DOWN ZOOM

command (SOFTWARE_
INTEGRATION ON)

SW_INTEGRATION = ON

RECORD IMAGE SIZE DATA

(command Qx #) /* adjust */

Ax=#

command (MIRROR_MODE MOVE)

MIRROR_MODE = MOVE

command (MIRROR_MODE STOP))*

MIRROR_MODE = STOP

SET_MIRRORS

command (MIRROR_MODE FOCUS)

MIRROR_MODE = FOCUS

command (EARTH_BOS ENABLE)

SET_MIRRORS

EARTH_BOS = ENABLED

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

(command (-Z = nnnn)

-Z = nnnn

| command (-Y+Z = nnnn)

-Y+Z = nnnn

| command (+Y+Z = nnnn))*

+Y+Z = nnnn

command (START)

Inactive during motio

command (MIRROR_MODE 0)

MIRROR_MODE =0

SPECTROMETER_FOCUS
USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

(HUT spectrometer focus
target acquired
| && DEP_STATE = OBSERVE) :
l! command (SOFTWARE_ SOFTWARE_INTEGRATION = ON
| INTEGRATION ON)

record (+Y+2)

record (START_TIME)
WAIT (200 seconds)
record (STOP_TIME)
command {x = #) -AX = #

command (MIRROR_MODE MOVE) MIRROR_MODE = MOVE
(command (MIRROR_MODE STOP))* | MIRROR_MODE = STOP
command (MIRROR_MODE FOCUS) | MIRROR_MODE = FOCUS

command (SOFTWARE_ SOFTWARE_INTEGRATION = OFF
INTGRATION OFF)

CALIBRATE_APERTURE_&_BOS S
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

(EARTH_BOS = ENABLED
&& DETECTOR = OFF) :
command (SOFTWARE_INTEGRATION SW_INTEGRATION = ON
ON)
command (TV_MAGNITUDE = #) adjust¥/ | TV_MAGNITUDE = #

(command (SLIT_WHEEL n)
command (WHITE_LEVEL = x) /*adjust */ WHITE_LEVEL = x
command (BLACK_LEVEL = x) /* adjust */ BLACK_LEVEL =x
WAIT (100 seconds)) n = 3,2,1,7,6,5,6,7,1,2,3 Aperture_Centers = COMPLETE

CALIBRATE_12ARCSEC_CFI
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

(Aperture_Centers = COMPLETE
&8& DEP_STATE = OBSERVE
&& Aperture 1 has moved
into place) :
IPS MOVEMENT

command (SLIT_WHEEL 9x120) SLIT_WHEEL = 9x120
command (SLIT_WHEEL 30 diam) o SLIT_WHEEL = 30 diam
check (PITCH/YAW ERROR <= £0.5)
IPS MOVEMENT

CALIBRATE_11x60ARCSEC_CTR ’ i
USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE

(Aperture_Centers = COMPLETE
&& DEP_STATE = OBSERVE
&& Aperture 6 has moved
into place) :
IPS MOVEMENT
command (SLIT_WHEEL 18x120 SLIT_WHEEL = 18x120
CAF2 FILTER) CAF2 FILTER
command (SLIT_WHEEL 18x120) SLIT_WHEEL = 18x120

check (PITCH/YAW ERROR <= x0.5)
IPS MOVEMENT

(mode = READY

&& HUT - only operations

&& Payload Bay floodlights
OFF

command (QUIT))
| command (QUIT))
command (VACUUM_PUMP_1 ON)

check_vacuum_pump (1, ON,
-5.00 torr, 0.15 A)

TATE = PAUSE

-~
i s UL

CAMERA_SENSITIVITY TEST
USER AGTIONS INTERFACE FEEDBACK | INTERFACE STATE

(HUT Camera Sensitivity Target Acquireg
&& DEP_STATE = OBSERVE)
command (TV_MODE DOWN FIELD) TV_MODE = DOWN FIELD

(command (TV_MAGNITUDE x)) TV_MAGNITUDE = x
x =10, 11, 12, 13

command (TV_MODE DOWN TV_MODE = DOWN
SPECTRUM) SPECTRUM

(command (TV_MAGNITUDE x)) TV_MAGNITUDE = x
X = 14, 15, 16

REDUCED_APERTURE_S0
USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

(+Y_SHUTTER_DOOR OPEN

&& -Y_SHUTTER_DOOR OPEN) :

check_vacuum_pump (1, ON,
-5.5 torr, 0.15 A)

check_vacuum_pump (2, OFF,
-7.0 torr, 0.00 A)

command (SMALL_APERTURE_DOOR SMALL_APERTURE_DOOR =
50cm*2) 50cm*2 .

command (SLIT_WHEEL 175 diam) SLIT_WHEEL = 175 diam

WAIT (2 minutes)

check_vacuum_pump (1, ON,
-5.5 torr, 0.15A)
command (+Y_SHUTTER_DOOR CLOSE) +Y_SHUTTER_DOOR = CLOSED

command (-Y_SHUTTER_DOOR_CLOSE) | -Y_SHUTTER_DOOR = CLOSED
command (VACUUM_PUMP_1 OFF)
WAIT (10 minutes)

command (VACUUM_PUMP_1 ON)

check_vacuum_pump (1, ON,
-5.5 torr, 0.15 A)
command (SLIT_WHEEL BLANK) SLIT_WHEEL = BLANK

command (FILTER = ND6) FILTER = ND6
command (+Y_SHUTTER_DOOR OPEN) | +Y_SHUTTER _DOOR - OPEN
command (-Y_SHUTTER_DOOR OPEN) | -Y_SHUTTER_DOOR = OPEN

command (SMALL_APERTURE_DOOR SMALL_APERTURE_DOOR =
CLOSED

REDUCED_APERTURE_1

USER ACTIONS

INTERFACE FEEDBACK

(+Y_SHUTTER_DOOR OPEN
&&-Y_SHUTTER_DOOR OPEN) :

check_vacuum_pump (1, ON,
-5.5 torr, 0.15 A)

check_vacuum_pump (2, OFF,
-7.0 torr, 0.00 A)

command (SMALL_APERTURE_DOOR
1cm~2)

SMALL_APERTURE_DOOR =
‘1cmA”2

command (SLIT_WHEEL 18 diam)

SLIT_WHEEL = 18 diam

check_vacuum _pump (1, ON,
-5.5 torr, 0.15A)

command (+Y_SHUTTER_DOOR CLOSE)

+Y_SHUTTER_DOOR = CLOSED

command (-Y_SHUTTER_DOOR CLOSE)

-Y_SHUTTER_DOOR = CLOSED

command (-Y_SHUTTER_DOOR CRACK)

-Y_SHUTTER_DOOR = CRACKED

command (VACUUM_PUMP_1 OFF)

WAIT (5 minutes)

command (VACUUM_PUMP_1 ON)

check_vacuum _pump (1, ON,
-5.5 torr, 0.15 A)

WAIT (2 minutes)

command (SLIT_WHEEL BLANK)

SLIT_WHEEL = BLANK

command (FILTER = ND6)

FILTER = ND6

command (+Y_SHUTI'ER_DOOR OPEN)

+Y_SHUTTER_DOOR = OPEN

command (-Y_SHUTTER_DOOR OPEN)

-Y_SHUTTER_DOOR = OPEN

command (SMALL_APERTURE_DOOR
OSE

SMALL_APERTURE_DOOR =
CLOSED

ExpEmMENT_OUTGAss]NG BE N

USER ACTIONS INTERFACE FEEDBACK

INTERFACE STATE

(DEP = READY);

command (SMALL_APERTURE_DOOR SMALL_APERTURE_DOOR = OPEN

50cm*2)

command (+Y_SHUTTER_DOOR +Y_SHUTTER_DOOR = OPEN

OPEN

command (-Y_SHUTTER_DOOR -Y_SHUTTER_DOOR = OPEN

OPEN)

i

| MONITOR_SAA
{ USER ACTIONS INTERFACE FEEDBACK | INTERFACE STATE
| (DEP_STATE = READY
&& SP = READY) :

[chooeanmvcowir=g |

IIII E

check (STATUS = "DET OFF ->
SP HIBER)
command (EARTH_BOS ENABLE) EARTH_BOS = ENABLED

command (TV_MODE FIELD) TV_MODE = FIELD

command (CAMERA_HV x) /* adjust */| CAMERA_HV = x

command (EXPOSURE x) /* adjust *

check (STATUS = "OFF -> - DET") _

command (TV_MAGNITUDE -5) TV_MAGNITUDE = -5

| eemmoong |
| command (EARTH_BOS ENABLE) EARTH_BOS = ENABLED

HUT - PREPARE FOR DEORBIT

USER ACTIONS

INTERFACE FEEDBACK

INTERFACE STATE

command (+28V BUS OFF)

+28V BUS OFF

command (HEATERS OFF)

HEATERS OFF

mode = SHUTDOWN

check_vacuum _pump (1, ON,
-5.00 torr, 0.15A)

check_vacuum _pump (2, OFF,
~7.13 torr, 0.00A

41

Appendix B - Graphical Interface for the Hopkins Ultraviolet Telescope

42

43

UHSERVAT I (A

+ Y SHUTTER DOOR

- ¥ SHUTTER DOOR

}

ITHER

PNT/D

—

45

Appendix C - Simulator for the Hopkins Ultraviolet Telescope

46

Activate_to_ Survival

47

Activity Frames:

Fri Jun 17 12:51:07 1994 Page: 1

hutl
Survival

Alphanumeric Id

Tasknet

Last Modified

Time
Mean
Devtation
Distribution
Unit

Crew
Crew

UModel Workload
Demand Value

Multiple Resource Model
Window Display
Displays & Controls
Auditory Processing
Verbal Processing
Spatial Processing
Continuous Motor
Discrete Motor

Communication
Message

User Defined Slots
heatercurrent

heaterconvcurrent

pump1icurrent

48

ACTS
hut1
qqswp -- Mon Jun 13 09:01:54 1994

0.0
0.0
NORMAL
MINUTES

Crew1

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

SendMsg saturn "set heater_current
[set $heater_current 9"

SendMsg saturn “set heater_conv_cu
rrent [set heater_conv_current 14]
SendMsg satumn "set pump1_current
[set pump1_current 15]"

Activity Frames:
hutl

Fri Jun 17 12:51:07 1994 Page: 2

L E————.
S —

pump2current
electronicstemb
mainpowercurrent
structuretemp
heatermode

bus28vcurrent

49

' SendMsg saturn "set pump2_current

[set pump2_current 0]

SendMsg saturn "set electronics_te
mp [set electronics_temp 45]"
SendMsg saturn "set main_power_cur
rent [set main_power_current 0]"
SendMsg saturn "set structure_temp
[set structure_temp 0]

SendMsg saturn "set heater_mode [s
et heater_mode 1]"

SendMsg saturn "set bus28v_current
[set bus28v_current 1]"

Event Frames: FriJun 17 12:51:11 1994 Page: 1

hutl
_\
\

Activate to Survival

- Alphanumeric Id EVENT4
Tasknet hut1
- Last Modified qqgswp -- Thu May 19 11:13:17 1994
Event
- Condition - $IC && ($heaters) && ($bus28v) &&
($pump1) && (!$pump?2)
- Probability 1.0

User Defined Slots

- .

Activate
— Alphanumeric Id EVENTS6
Tasknet hut1
- Last Modified qqswp -- Fri May 20 17:10:05 1994
Event
_ Condition $IC && ($main_power)
Probability 1.0
. User Defined Slots
inactive $FALSE

_\

Deactivate
_ Alphanumeric Id EVENT10
Tasknet hut1
_ Last Modified qqswp -- Fri May 20 17:10:26 1994
Event
_ Condition $IC && ($inactive)
Probability 1.0

50

_ Event Frames: FriJun 17 12:51:11 1994 Page: 2

hutl
.

User Defined Slots

.
Deorbit

Alphanumeric Id

Tasknet

Last Modified

Event
Condition

Probability
User Defined Slots

heatercurrent

heaterconvcurrent

bus28vcurrent

electronicstemp

51

EVENT24
hut1
qqswp -- Mon Jun 13 07:58:25 1994

$IC && (I$bus28v) && ('$heaters) &
& ($pump1) && (1$pump2)
1.0

SendMsg satum “set heater_current
[set heater_current 0] *

SendMsg saturn "set heater_conv_cu
rrent [set heater_conv_current 0]"

SendMsg satumn "set bus28v_current
[set bus28v_current 0] "

SendMsg saturn "set electronics_te
mp [set electronics_temp 0]"

52

Event Frames: Fri Jun 17 12:51:24 1994 Page: 1

Active
enter

Alphanumeric Id EVENT106
Tasknet Active
- Last Modified qqgswp -- Tue May 24 20:37:09 1994
Event
-~ Condition $iC
Probability 1.0
— User Defined Slots
inactive $FALSE
exi
~ Alphanumeric Id EVENT107
Tasknet Active
- Last Modified qqgswp -- Fri May 20 17:27:15 1994
Event
— Condition $IC && $inactive
Probability 1.0

User Defined Slots

53

ey

4
1
H
3

E—] |

enter_power exit_power

54

Activity Frames:

POWER
e ——————————————e
B —

FriJun 17 12:51:40 1994 Page: 1

L

Communication
Message

User Defined Slots
mainpowercurrent

inactive

calcbuscurr

power
Alphanumeric Id ACT319
Tasknet POWER
Last Modified qgswp -- Thu Jun 16 12:46:11 1994
Time
Mean 3.0
Devtation 0.0
Distribution NORMAL
Unit MINUTES
Crew
Crew Crew1
UModel Workload
Demand Value 0.0
Multiple Resource Model
Window Display 0.0
Displays & Controls 0.0
Auditory Processing 0.0
Verbal Processing 0.0
Spatial Processing 0.0
Continuous Motor 0.0
Discrete Motor 0.0

SendMsg saturn "set main_power_cur
rent [set main_power_current [expr

{3 + $camera_current}] "

if {{$main_power} then {$TRUE} els

e {$FALSE}

0.14 + $main_power_current + $spec
_current + ($pump1_current/100) +

Activity Frames: Fri Jun 17 12:51:40 1994 Page: 2

) POWER
\
\

‘ ($pump2_current/100)
bus28vcurrent SendMsg saturn "set bus28v_current
[set bus28v_current [expr { (($ca
lc_bus_curr > 0) && ($calc_bus_cur
r<1))?1:$calc_bus_curr}]]

posSvcurrent SendMsg saturn "set pos5v_current
B [set pos5v_current 5]"
posi2vcurrent SendMsg saturn "set pos12v_current
N [set pos12v_current 12]"
negl2vcurrent SendMsg satum "set neg12v_current
- [set neg12v_current -12]"
pos18vcurrent SendMsg satum "set pos18v_current

[set pos18v_current 19]"

56

Event Frames:

FriJun 17 12:51:44 1994 Page: 1

POWER
—
-

enter_power

— Alphanumeric Id
Tasknet

— Last Modified
Event

- Condition

Probability
—~ User Defined Slots

EVENT320
POWER
qgswp -- Mon Jun 13 22:52:09 1994

$IC
1.0

e ———

— exit_power
Alphanumeric Id
— Tasknet
Last Modified
— Event
Condition

Probability

User Defined Slots
bus28vcurrent

mainpowercurrent
posSvcurrent
posi2vcurrent

negi2vcurrent
57

- EVENT321

POWER
qgswp -- Wed Jun 15 11:23:32 1994

$IC && S$inactive

1.0

SendMsg saturn "set bus28v_current
[set bus28v_current [expr {$bus28
v_current - $main_power_current}]
K

SendMsg satum "set main_power_cur
rent [set main_power_current 0]"
SendMsg satum "“set pos5v_current
[set pos5v_current 0)"

SendMsg satum "set pos12v_current
[set pos12v_current 0]"

SendMsg saturn "set neg12v_current

Event Frames: Fri Jun 17 12:51:44 1994 Page: 2

POWER

| [set neg12v_current 0]"
posi8vcurrent SendMsg saturn "set pos18v_current
[set pos18v_current 0]"

power_cont

- Alphanumeric Id EVENT322
Tasknet POWER
- Last Modified qqswp -- Wed May 25 09:04:57 1994
Event
- Condition $IC && !$inactive
Probability 1.0

- User Defined Slots

58

enfer_pump

59

pump_cont

exit_pump

Activity Frames:
PUMPS

“
S

Fri Jun 17 12:51:59 1994 Page: 1

—5

pumps
- Alphanumeric Id
Tasknet
— Last Modified
Time
- Mean
Devtation
- Distribution
Unit
— Crew
Crew
- UModel Workload
Demand Value

— Multiple Resource Model

Window Display
Displays & Controls

Auditory Processing

Verbal Processing
Spatial Processing
Continuous Motor
Discrete Motor

Communication
Message

User Defined Slots
pumpicurrent

pump2current

pumplpressure

ACT338
PUMPS
qqgswp -- Mon Jun 13 22:54:41 1994

3.0
0.0
NORMAL
MINUTES

Crew1

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

SendMsg satumn "set pump1_current
[set pump1_current [expr {$pump1 *
12} 11"
SendMsg saturn "set pump2_current
[set pump2_current [expr {$pump2 *
13}]1"

SendMsg satumn "set pump1_pressure

Event Frames: FriJun 17 12:52:02 1994 Page: 1
PUMPS

\
\
— \

enter_pump
Alphanumeric Id EVENT335
Tasknet PUMPS
-~ Last Modified qgswp -- Mon Jun 13 22:51:53 1994
Event
— Condition $iC
Probability 1.0

— User Defined Siots

\

— pump_cont
Alphanumeric Id EVENT336
— Tasknet PUMPS
Last Modified qqswp -- Thu Jun 2 14:58:39 1994
— Event
Condition $IC && !$inactive
_ Probability 1.0

User Defined Slots

__\

exit_pump
_ Alphanumeric Id EVENT337
Tasknet PUMPS
3 Last Modified qgswp -- Mon Jun 13 22:52:43 1994
Event
Condition $IC && $inactive
B Probability 1.0

User Defined Slots

61

cument_cont

enter_heaters

exit_heaters

femp_cont

62

Activity Frames:

HEATERS
S —————————————————
R -

FriJun 17 12:52:15 1994 Page: 1

e

CURRENTS
- Alphanumeric Id ACT355
Tasknet HEATERS
- Last Modified qqswp -- Mon Jun 13 23:02:09 1994
Time

- Mean 3.0
Devtation 0.0

- Distribution NORMAL
Unit MINUTES

_ Crew
Crew Crew1

_ UModel Workload
Demand Value 0.0

. Multiple Resource Model
Window Display 0.0

, Displays & Controls 0.0
Auditory Processing 0.0

B Verbal Processing 0.0
Spatial Processing 0.0

5 Continuous Motor 0.0
Discrete Motor 0.0

Communication
Message

User Defined Slots
heatercurrent

heaterconvcurrent

SendMsg satumn "set heater_current
[set heater_current 9]"

SendMsg saturmn "set heater_conv_cu
rrent [set heater_conv_current 14]

Activity Frames:

FriJun 17 12:52:15 1994 Page: 2

HEATERS
TEMPS

Alphanumeric Id
Tasknet
Last Modified
Time
Mean
- Devtation
Distribution
- Unit
Crew
- Crew
UModel Workload
~ Demand Value
Multiple Resource Model
- Window Display
Displays & Controls
- Auditory Processing
Verbal Processing
— Spatial Processing
Continuous Motor
-~ Discrete Motor
Communication
- Message
User Defined Slots
— electronicstemp

— structuretemp

ACT356
HEATERS
qgswp -- Mon Jun 13 23:00:42 1994

3.0
0.0
NORMAL
MINUTES

Crew1

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

SendMsg satum "set electronics_te
mp [set electronics_temp 45]"
SendMsg satum "set structure_temp
[set structure_temp [expr {!$dep
_active 70:10}]]"

Event Frames:
HEATERS

Fri Jun 17 12:52:17 1994 Page: 1

“
e ————— T ———
B ———

enter_heaters
Alphanumeric Id
Tasknet
Last Modified
Event
Condition
Probability
User Defined Slots

EVENT351
HEATERS
qgswp -- Mon Jun 13 22:56:38 1994

$IC
1.0

E

exit_heaters
Alphanumeric Id
Tasknet
Last Modified
Event
Condition
Probability
User Defined Slots

EVENT352
HEATERS
qqswp -- Mon Jun 13 22:59:18 1994

$IC && Sinactive
1.0

—

current_cont
Alphanumeric Id
Tasknet
Last Modified
Event
Condition

Probability
User Defined Slots

EVENT353
HEATERS
qgswp -- Thu Jun 2 15:22:08 1994

$IC && !$inactive

1.0

Event Frames: FriJun 17 12:52:17 1994 Page: 2

HEATERS
,——'_'1_——_
_ \

temp_cont
Alphanumeric Id EVENT354
B Tasknet HEATERS
Last Modified qqswp -- Thu Jun 2 15:22:41 1994
- Event
Condition $IC && !$inactive
- Probability 1.0

User Defined Slots

66

67

Activity Frames: Fri Jun 17 12:52:31 1994 Page: 1
DEP

—
D ———
R e —

RESET
Alphanumeric Id ACT374
Tasknet DEP
— Last Modified qqgswp -- Tue Jun 14 08:34:44 1994
Time
~ Mean 4.0
Devtation 0.0
- Distribution NORMAL
Unit MINUTES
— Crew
Crew Crew1
- UModel Workload
Demand Value -0.0
_ Multiple Resource Model
Window Display 0.0
— Displays & Controls 0.0
Auditory Processing 0.0
— Verbal Processing 0.0
Spatial Processing 0.0
_ Continuous Motor 0.0
Discrete Motor 0.0
_ Communication
Message
N User Defined Slots
depstate SendMsg saturn "set dep_state [set

dep_state 1]"

.
LOAD

Alphanumeric Id ACT378
68

Activity Frames: FriJun 17 12:52:32 1994 Page: 2

| DEP
\
\

Tasknet

Last Modified

Time
Mean
Devtation
Distribution
Unit

Crew
Crew

UModel Workload
Demand Value

Multiple Resource Model
Window Display
Displays & Controls
Auditory Processing
Verbal Processing
Spatial Processing
Continuous Motor
Discrete Motor

Communication
Message

User Defined Slots
depactive

depstate

previewtvmag
previewtvmode
previewsegname
previewspmode
previewspmask
previewlocatetype

previewobstype 69

' DEP

qqswp -- Wed Jun 15 10:27:56 1994

50.0

0.0
NORMAL
MINUTES

Crew1

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

SendMsg satum "set dep_active [se
t dep_active 1]"

SendMsg satum "set dep_state [set
dep_state 2]"

©O O O 0O ©o o o

Activity Frames: FriJun 17 12:52:32 1994 Page: 3

DEP
'

previewslitpos
previewdoorpos
previewfilterpos
previewsrcmag
previewguidemag

READY

© O © o o

Alphanumeric Id ACT394
Tasknet DEP
Last Modified ggswp -- Tue Jun 14 08:48:58 1994
Time

Mean 4.0

Devtation 0.0

Distribution NORMAL

Unit MINUTES
Crew

Crew Crew1
UModel Workload

Demand Value 0.0
Multiple Resource Model

Window Display 0.0

Displays & Controls 0.0

Auditory Processing 0.0

Verbal Processing 0.0

Spatial Processing 0.0

Continuous Motor 0.0

Discrete Motor 0.0
Communication

Message

User Defined Slots
70

Activity Frames:
DEP

Fri Jun 17 12:52:32 1994 Page: 4

\
T ——————————————————————————

depstate

SendMsg saturn "set dep_state [set
dep_state 3)"

\

INACTIVE
-~ Alphanumeric Id ACT400
Tasknet DEP
- Last Modified qqswp -- Tue Jun 14 08:50:05 1994
Time

— Mean 2.0
Devtation 0.0

— Distribution NORMAL
Unit -MINUTES

_ Crew
Crew Crew1

_ UModel Workload
Demand Value 0.0

_ Multiple Resource Model
Window Display 0.0

_ Displays & Controls 0.0
Auditory Processing 0.0

_ Verbal Processing 0.0
Spatial Processing 0.0

- Continuous Motor 0.0
Discrete Motor 0.0

Communication

Message
User Defined Slots
- depactive SendMsg saturn "set dep_active [se
t dep_active 0]"
B depstate SendMsg saturn "set dep_state [set

71

Activity Frames: FriJun 17 12:52:32 1994 Page: 5

DEP
B ————————
S ——

dep_state Q)"

-

exiting
Alphanumeric Id ACT408
Tasknet DEP
Last Modified qqswp -- Tue Jun 14 09:33:48 1994
Time
- Mean 2.0
Devtation 0.0
— Distribution NORMAL
Unit MINUTES
- Crew
Crew Crewt
— UModel Workload
Demand Value 0.0
- Multiple Resource Model
Window Display 0.0
— Displays & Controls 0.0
Auditory Processing 0.0
- Verbal Processing 0.0
Spatial Processing 0.0
- Continuous Motor 0.0
Discrete Motor 0.0
_ Communication
Message

- User Defined Slots

\

SETUP
Alphanumeric Id 7 ACT422

—~

Activity Frames:
DEP

Tasknet

Last Modified

Time
Mean
Devtation
Distribution
Unit

Crew
Crew

UModel Workload
Demand Value

Multiple Resource Model
Window Display
Displays & Controls
Auditory Processing
Verbal Processing
Spatial Processing
Continuous Motor
Discrete Motor

Communication
Message

User Defined Slots
currentdoorpos
currentfilerpos
currentobstype
currentsegname
currentslitpos
currentspmask
currentspmode
currentsrcmag
currenttvmag
currenttvmode

Fri Jun 17 12:52:32 1994 Page: 6

73

“
e —

DEP
gqqswp -- Thu Jun 16 22:07:32 1994

4.0
0.0
NORMAL
MINUTES

Crew1

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

$preview_door_pos
$preview_filter_pos
$preview_obs_type
$preview_seq_name
$preview_slit_pos
$preview_sp_mask
$preview_sp_mode
$Spreview_src_mag
$preview_tv_mag
$preview_tv_mode

Activity Frames:

Fri Jun 17 12:52:32 1994 Page: 7

DEP
\
\

currentseq
currentguidemag
currentlocatetype
currentdatais
currentrate
currentpntdither
currentpyerror
currentobsstatus
depstate

$preview_seq
$preview_guide_mag
$preview_locate_type
$preview_data_is

$preview_rate

$preview_pnt_dither
$preview_p_y_error
$preview_obs_status

SendMsg saturn "set dep_state [set
dep_state 4]"

\

LOCATE
Alphanumeric Id
Tasknet
Last Modified
Time

Mean
Devtation
Distribution
Unit
Crew
Crew
UModel Workload
Demand Value
Multiple Resource Model
Window Display
Displays & Controls
Auditory Processing
Verbal Processing

Spatial Processing
74

ACT427
DEP
qgswp -- Thu Jun 16 22:08:17 1994

4.0
0.0
NORMAL
MINUTES

Crewt

0.0

0.0
0.0
0.0
0.0
0.0

Activity Frames: Fri Jun 17 12:52:33 1994 Page: 8

) DEP
) \
T ———————————————————————————————————

- Continuous Motor 0.0
Discrete Motor 0.0
Communication
Message
User Defined Slots
depstate SendMsg saturn "set dep_state [set
dep_state 5]"
— SLEW
Alphanumeric Id ACT436
- Tasknet DEP
Last Modified qqswp -- Thu Jun 16 22:09:52 1994
- Time
Mean 4.0
- Devtation 0.0
Distribution NORMAL
— Unit MINUTES
Crew
- Crew Crew1
| UModel Workload
— Demand Value 0.0
Multiple Resource Model
_ Window Display 0.0
Displays & Controls 0.0
- Auditory Processing 0.0
Verbal Processing 0.0
_ Spatial Processing 0.0
Continuous Motor 0.0
Discrete Motor 0.0

Communication
75

Event Frames: FriJun 17 12:52:37 1994 Page: 1
\
ﬂ\

enter_reset

— Alphanumeric Id EVENT373
Tasknet DEP
Last Modified qqswp -- Wed Jun 15 10:28:28 1994
Event
- Condition $IC && ($main_power) && (!$inactiv
e)
- Probability 1.0
User Defined Slots
— depactive SendMsg saturn "set dep_active [se
t dep_active 0]"
— depcmd 1

\

_ exit_dep
Alphanumeric Id EVENT375
_ Tasknet DEP
Last Modified qqswp -- Tue Jun 14 09:34:05 1994
_ Event
Condition $IC
_ Probability 1.0
User Defined Slots
3 depactive SendMsg saturn "set dep_active [se
t dep_active 0]"
depstate SendMsg satumn "set dep_state [set

dep_state 0]"

_ \
load _cmd
76

Event Frames: Fri Jun 17 12:52:37 1994 Page: 2

DEP
-“
Alphanumeric Id EVENT376
B Tasknet DEP
Last Modified qgswp -- Wed Jun 15 10:28:31 1994
; Event
Condition $IC && ($dep_cmd == 2) && ('$inact
ive)
Probability 1.0

User Defined Slots

E

done_loading

Alphanumeric Id EVENT377
- Tasknet DEP
Last Modified qqswp -- Wed Jun 15 11:07:22 1994
- Event
Condition $IC
- Probability 1.0

User Defined Slots

reset_again

~ Alphanumeric Id EVENT390
Tasknet DEP
- Last Modified qgswp -- Tue Jun 14 09:38:32 1994
Event
- Condition $IC && (($dep_cmd == 1) Il ($inact
ive))
- Probability 1.0

User Defined Slots

77

Event Frames: Fri Jun 17 12:52:37 1994 Page: 3

DEP
_—
T —————————————————————————————————————

enter_quit
Alphanumeric Id EVENT398
Tasknet DEP
Last Modified qqswp -- Wed Jun 15 11:01:39 1994
Event
B Condition $IC && ($dep_cmd == 8) && (I$inact
ive)
Probability 1.0

User Defined Slots

T ————————————————————————————

exit_1
Alphanumeric Id EVENT406
- Tasknet DEP
Last Modified qgswp -- Tue Jun 14 09:28:13 1994
- Event
Condition $IC && $inactive
- Probability 1.0

User Defined Slots

C—

reset_1

- Alphanumeric Id EVENT415
Tasknet DEP

B Last Modified gqswp -- Tue Jun 14 09:39:26 1994
Event

- Condition $IC && (($dep_cmd == 1) Ii ($inact

ive))
- Probability 1.0

78

Event Frames:
DEP

FriJun 17 12:52:37 1994 Page: 4

\
_—\

— User Defined Slots

\

enter_setup
Alphanumeric Id
_ Tasknet
Last Modified
_ Event
Condition

Probability
User Defined Slots

EVENT423
DEP
qqgswp -- Wed Jun 15 11:01:54 1994

$IC && ($dep_cmd == 3) && (!$inact
ive)
1.0

\

enter_locate
Alphanumeric Id
Tasknet
Last Modified
Event
Condition

Probability
User Defined Slots

EVENT426
DEP
qqswp -- Wed Jun 15 09:56:11 1994

$IC && ($current_seq != 0) && (!$i
nactive)
1.0

\

reset 2
Alphanumeric Id
Tasknet
Last Modified

EVENT429
DEP
qqswp -- Thu Jun 16 12:48:09 1994

Event Frames: Fri Jun 17 12:52:38 1994 Page: 5

DEP
“
“
Event
- Condition $IC && (($dep_cmd == 1) Il ($inact
ive))
- Probability 1.0

User Defined Slots

ﬁ

seq_zero

- Alphanumeric Id EVENT434
Tasknet DEP

- Last Modified qgswp -- Thu Jun 16 22:48:50 1994
Event

— Condition $IC && ($preview_seq == 0) && (!$i

nactive)

- Probability 1.0
User Defined Slots

- depcmd 4

‘

— reset 3
Alphanumeric Id EVENT439
- Tasknet DEP
Last Modified qqswp -- Wed Jun 15 10:00:23 1994
_ Event
Condition $IC && (($dep_cmd == 1) Il ($inact
_ ive))
Probability 1.0

User Defined Slots

Event Frames: Fri Jun 17 12:52:38 1994 Page: 6

|

begin_obs

Alphanumeric Id EVENT442
Tasknet DEP

B Last Modified qgswp -- Wed Jun 15 11:02:51 1994
Event

- Condition $IC && ($dep_cmd == 4) && (I$inact

ive)
h Probability 1.0

User Defined Slots

reset 4

Alphanumeric Id EVENT460
Tasknet DEP
- Last Modified qgswp -- Wed Jun 15 10:12:07 1994
Event
- Condition $IC && (($dep_cmd == 1) I ($inact
ive))
- Probability 1.0

User Defined Slots

obs_complete

- Alphanumeric Id EVENT463
Tasknet DEP
- Last Modified qqswp -- Wed Jun 15 10:12:59 1994
Event
- Condition $iC
Probability 1.0

— User Defined Slots
81

enter_current enfer_preview

begin_obs

exit_pause

82

Activity Frames: Fri Jun 17 12:52:46 1994 Page: 1
OBSERVE

“
e ———— e EEETE——
e

OBS
- Alphanumeric Id ACT471
Tasknet OBSERVE
Last Modified qgswp -- Thu Jun 16 22:09:01 1994
Time

_ Mean 4.0
Devtation 0.0

— Distribution NORMAL
Unit MINUTES

_ Crew
Crew Crew

_ UModel Workload
Demand Value 0.0

_ Multiple Resource Model
Window Display 0.0

_ Displays & Controls 0.0
Auditory Processing 0.0

_ Verbal Processing 0.0
Spatial Processing 0.0

_ Continuous Motor 0.0
Discrete Motor 0.0

_ Communication
Message

N User Defined Slots
depstate SendMsg satum "set dep_state [set

dep_state 6]"

- o ————————EEEEEEEE———,—_
PAUSE

Alphanumeric Id ACT474
83

B Activity Frames: Fri Jun 17 12:52:47 1994 Page: 2

OBSERVE

Tasknet OBSERVE
N Last Modified qgswp -- Wed Jun 15 10:18:46 1994
Time
- Mean 4.0
Devtation 0.0
- Distribution NORMAL
Unit MINUTES
- Crew
Crew Crew1
- UModel Workload
Demand Value 0.0
- Multiple Resource Model
Window Display 0.0
- Displays & Controls 0.0
Auditory Processing 0.0
- Verbal Processing 0.0
Spatial Processing 0.0
- Continuous Motor 0.0
Discrete Motor 0.0
— Communication
Message
- User Defined Slots
pausetime $TIME
EXIT
- Alphanumeric Id ACT484
Tasknet OBSERVE
_ Last Modified gqswp -- Wed Jun 15 10:30:09 1994
Time
_ Mean 4.0
Devtation 0.0

84

_ Activity Frames: Fri Jun 17 12:52:47 1994 Page: 3

OBSERVE

. Distribution NORMAL
Unit MINUTES
Crew
Crew Crew1
UModel Workload
Demand Value 0.0
Multiple Resource Model
Window Display 0.0
Displays & Controls 0.0
B Auditory Processing 0.0
Verbal Processing 0.0
- Spatial Processing 0.0
Continuous Motor 0.0
- Discrete Motor 0.0
Communication
B Message

User Defined Slots

CURRENT

- Alphanumeric Id ACT510
Tasknet OBSERVE
- Last Modified qqswp -- Thu Jun 16 13:47:09 1994
Time
- Mean 4.0
Devtation 0.0
- Distribution NORMAL
Unit MINUTES
- Crew
Crew Crew1

- UModel Workload
85

Activity Frames: Fri Jun 17 12:52:47 1994 Page: 4

OBSERVE
"\

- Demand Value 0.0
Multiple Resource Model
Window Display 0.0
Displays & Controls 0.0
Auditory Processing 0.0
Verbal Processing 0.0
Spatial Processing 0.0
Continuous Motor 0.0
Discrete Motor 0.0

Communication
Message

User Defined Slots
currentdoorpos
currentfilerpos
currentguidemag
currentlocatetype
currentobstype
currentseq
currentseqname
currentslitpos

currentspmask

currentspmode

86

SendMsg satumn "set current_door_p
os $current_door_pos"

SendMsg satum "set current_filter
_pos $current_filter_pos"

SendMsg satum "set current_guide_
mag $current_guide_mag"

SendMsg saturn "set current_locate
_type $current_locate_type"
SendMsg saturn "set current_obs_ty
pe $current_obs_type"

SendMsg saturn "set current_seq $c
urrent_seq"

SendMsg saturn "set current_seq_na
me $current_seq_name"

SendMsg saturn “set current_slit_p
os $current_slit_pos"

SendMsg satum "set current_sp_mas
k $current_sp_mask"

SendMsg satumn "set current_sp_mod
e $current_sp_mode"

Event Frames:
OBSERVE

Fri Jun 17 12:52:49 1994 Page: 1

1
e

50—

begin_obs
-~ Alphanumeric Id
Tasknet
— Last Modified
Event
— Condition
Probability

— User Defined Slots
obstimeexpire

EVENT469
OBSERVE
qqswp -- Thu Jun 16 14:25:57 1994

$IC
1.0

SendMsg saturn "set obs_time_expir
e [set obs_time_expire [expr { $TI
ME +200.0}]]"

~——

exiting
- Alphanumeric Id

Tasknet

Last Modified

Event
Condition
Probability

User Defined Slots

EVENT470
OBSERVE
qqswp -- Wed Jun 15 10:30:17 1994

$IC
1.0

—

enter_pause
Alphanumeric Id
Tasknet
Last Modified
Event
Condition

EVENT472
OBSERVE
qqswp -- Wed Jun 15 11:03:15 1994

$IC && ($dep_cmd == 6) && (!$inact

Event Frames:
OBSERVE

Probability

User Defined Slots

Fri Jun 17 12:52:49 1994 Page: 2

e
M ———

ive)

1.0

L .

exit_pause
- Alphanumeric Id
Tasknet
- Last Modified
Event
- Condition
Probability

— User Defined Slots
obstimeexpire

EVENT473
OBSERVE
qqswp -- Wed Jun 15 11:03:34 1994

$IC && (($dep_cmd == 5) |l ($dep_c
md == 7) |l ($dep_cmd == 8) Il ($i
nactive))

1.0

$obs_time_expire + ($TIME - $pause
_time)

e

— exit_obs
Alphanumeric Id
- Tasknet
Last Modified
— Event
Condition
— Probability

User Defined Slots

EVENT482
OBSERVE
gqswp -- Thu Jun 16 13:06:54 1994

$IC && (($dep_cmd == 7) Il ($dep_c
md == 8) || ($obs_time_expire > $T
IME) Il ($inactive))

1.0

Event Frames:
OBSERVE

Fri Jun 17 12:52:50 1994 Page: 3

R
B ———————————_——— T —
——

seq_zero_exit
Alphanumeric Id
Tasknet
Last Modified
Event
Condition

Probability
User Defined Slots

EVENT498
OBSERVE
qqswp -- Thu Jun 16 10:04:53 1994

$IC && (($dep_cmd == 1) Il ($dep_c
md == 3)) && ($preview_seq != 0)
1.0

L

exit_preview
Alphanumeric Id
Tasknet
Last Modified
Event
Condition
Probability
User Defined Slots

EVENT501
OBSERVE
qgswp -- Thu Jun 16 10:09:55 1994

$IC
1.0

enter_preview
Alphanumeric Id
Tasknet
- Last Modified
Event
- Condition

- Probability

EVENT502
OBSERVE
qgswp -- Thu Jun 16 10:09:12 1994

$IC && ($dep_cmd == 9) && (!$inact
ive)
1.0

Event Frames:
OBSERVE

— User Defined Slots

Fri Jun 17 12:52:50 1994 Page: 4

e
e T e

— exit_current
Alphanumeric Id
- Tasknet
Last Modified
Event
Condition

Probability
User Defined Slots
currentwindow

EVENT508
OBSERVE
qgswp -- Thu Jun 16 13:11:44 1994

$IC && (($dep_cmd ==-11) |l ($ina
ctive))

1.0

SendMsg satum "cmd dw hut1_seq"

»——

enter_current
Alphanumeric Id
Tasknet
Last Modified
Event
Condition

Probability
User Defined Slots
currentwindow

EVENT509
OBSERVE
qgswp -- Thu Jun 16 13:49:51 1994

$IC && ($dep_cmd == 11) && (I$inac
tive)

1.0

SendMsg saturn "cmd aw hut1_seq"

